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Fig. 1: GeFF, Generalizable Feature Fields, provide unified implicit scene representations for both robot navigation and manipulation
in real-time. We demonstrate the efficacy of GeFF on open-world mobile manipulation, semantic-aware navigation, and zero-shot
manipulation by parts under diverse scenes ((a) work in a lab where a person walks in, (b) enter a meeting room with narrow entrance,
(c) fine part-level manipulation, (d) grasp objects in a parking lot, and (e) semantic-aware navigation near a lawn). The visualization of
the feature fields is obtained by PCA of rendered features. For best illustration, please check out the supplementary video.

Abstract— An open problem in mobile manipulation is how
to represent objects and scenes in a unified manner so that
robots can use both for navigation and manipulation. The latter
requires capturing intricate geometry while understanding fine-
grained semantics, whereas the former involves capturing the
complexity inherent at an expansive physical scale. In this work,
we present GeFF (Generalizable Feature Fields), a scene-level
generalizable neural feature field that acts as a unified repre-
sentation for both navigation and manipulation that performs
in real-time. To do so, we treat generative novel view synthesis
as a pre-training task, and then align the resulting rich scene
priors with natural language via CLIP feature distillation. We

demonstrate the effectiveness of this approach by deploying
GeFF on a quadrupedal robot equipped with a manipulator.
We quantitatively evaluate GeFF’s ability for open-vocabulary
object-/part-level manipulation and show that GeFF outper-
forms point-based baselines in runtime and storage-accuracy
trade-offs, with qualitative examples of semantics-aware navi-
gation and articulated object manipulation.

I. INTRODUCTION

Building a personal robot that can assist with common
chores has been a long-standing goal of robotics [14, 27,
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55]. This paper studies the task of open-vocabulary mobile
manipulation, where a robot needs to navigate through
diverse scenes and manipulate objects based on language
instructions. This task, while seemingly easy for humans,
remains challenging for autonomous robots. Humans achieve
such tasks by understanding the layout of rooms and the
affordances of objects without explicitly memorizing every
aspect. However, when it comes to robots, there does not
exist a unified scene representation that captures geometry
and semantics for navigation and manipulation tasks.

Recent approaches in navigation seek representations such
as geometric maps (with semantic labels) [1, 34, 47] and
topological maps [40, 41] to handle large-scale scenes,
but are not well integrated with manipulation requirements.
Manipulation, on the other hand, often relies on dense
scene representation such as implicit surfaces or meshes [36,
51, 63] to compute precise grasping poses, which are not
typically encoded in navigation representations. More im-
portantly, supporting semantics-aware navigation with open-
vocabulary object queries requires grounding to geometric
and semantic concepts in the environment. The lack of a
unified representation leads to unsatisfactory performance in
open-vocabulary manipulation in large scenes [58]. Perform-
ing coherent open-vocabulary perception for both navigation
and manipulation remains a significant challenge.

We present a novel scene-level Generalizable Feature
Field (GeFF) as a unified representation for navigation and
manipulation, trained with neural rendering akin to Neural
Radiance Fields (NeRFs) [28]. Instead of fitting a single
static NeRF, GeFF only requires a single feed-forward pass to
update the scene representation during inference. As a unified
representation, GeFF stands out with two more advantages:
(i) GeFF can decode multiple 3D scene representations from
a posed RGB-D stream, including signed distance function
(SDF) and pointcloud, and (ii) performing feature distillation
from a pre-trained Vision-Language Model (VLM), e.g.,
CLIP [35], GeFF provides language-conditioned semantics.
Thus, GeFF mitigates the aforementioned discrepancy by
supporting both real-time semantics-aware navigation (e.g.,
avoiding humans) and zero-shot object part manipulation
(e.g., grasping mugs and tools by handles).

Using a quadrupedal mobile manipulator, we demonstrate
that GeFF enables capabilities such as object-/part-level
manipulation, semantics-aware navigation, and the potential
to support articulated manipulation. We quantitatively show
that GeFF outperforms existing point-based [13] and im-
plicit [20] methods in open-vocabulary scene representation
for mobile manipulation. Notably, the overall success rate
outperforms the best baseline by 19.2 absolute points
on averaged object-level and part-level manipulation,
while maintaining real-time efficiency. In addition, we
also qualitatively show that GeFF can be used to provide
perception for other tasks such as semantics-aware navigation
and articulated manipulation. We plan to release the pre-
trained models and the source code.

II. RELATED WORK

Generalizable NeRFs. Generalizable NeRFs extend con-
ventional NeRFs’ ability to render detailed novel views to
scenes that come with just one or two images [2, 29,
48, 50, 52, 53, 57, 61]. They replace the time-consuming
per-scene optimization with a single feed-forward process
through a network. Existing work [37, 46, 50] mainly focus
on synthesizing novel views. Our focus is to use novel view
synthesis via generalizable neural fields as a generative pre-
training task. At test time, we use the produced network for
representation generation on mobile robots.

Feature Distillation in NeRF. Beyond just synthesizing
novel views, recent work [20, 22, 49, 57] attempted to
combine NeRF with feature distillation [5, 30, 35, 38]
to empower neural fields with semantic understanding of
objects [22, 49, 57], scenes [20, 42] and downstream robotic
applications [42, 62]. PartSLIP [23] and FeatureNerf [57]
performs part-level segmentation of objects, but require
complete point clouds. Most closely related to our work,
LERF-TOGO [20, 36] and F3RM [42] distill CLIP features
for tabletop manipulation. We show that the conditional CLIP
queries proposed in LERF-TOGO [36] apply to GeFF for
part-based manipulation as well. Nonetheless, previous work
cannot be easily adapted for mobile manipulation due to
the expensive per-scene optimization scheme [20, 22] or
restrictions to object-level representations [57]. In contrast,
GeFF runs real-time on mobile robots.

Mobile Manipulation. Besides work that perform closed-
set mobile grasping [4, 12, 17, 19, 32, 33, 43, 45, 54,
56, 59, 65], there have been some recent work [7, 13, 15,
18, 24, 26, 60] that leverage 2D foundation vision models
to for open-vocabulary mobile grasping and demonstration-
based mobile manipulation [3]. Existing open-vocabulary
manipulation methods project predictions from large-scale
models [21, 35] directly onto explicit representations. This
may require (1) offline optimization [13], expensive storage
costs allowing only room-scale scenes and object-level grasp-
ing [13, 24]. GeFF, on the other hand, builds a latent and
unified representation for larger-scale outdoor environments
and part-level grasping in real-time.

III. GEFF FOR MOBILE MANIPULATION

A. Problem Statement

Given a coordinate x ∈ R3 and a viewing direction d on
the unit sphere S2, NeRF [28] adopts an occupancy mapping
σθ(x) : R3 → [0, 1] and a color mapping cω(x,d) : R3 ×
S2 → R3. Consider a ray r from a camera viewport with
origin o and direction d. NeRF estimates color along r by

Ĉ(r) =

∫ tf

tn

T (t)αθ(r(t))cω(r(t),d)dt , (1)

where tn and tf are minimum and maximum bounding
distances, T (t) = exp(−

∫ t

tn
σθ(s)ds) is the transmittance

capturing cumulative occupancy, and αθ(r(t)) is the opacity
value at r(t) (in NeRF [28], αθ = σθ).

Let Ω be the space of RGB-D images. Consider N
posed RGB-D frames D = {(Fi,Ti)}Ni=1, Fi ∈ Ω, Ti ∈
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Fig. 2: Pre-trained as a generalizable NeRF encoder, GeFF provides a unified scene representation to support robot tasks from a onboard
RGB-D stream, offering both real-time geometric information for planning and language-grounded semantics query capability. Compared
to LERF [20], GeFF runs in real-time without costly per-scene optimization, which enables many potential robotics applications. We
demonstrate the efficacy of GeFF in open-world language-conditioned mobile manipulation. Feature visualizations are done by running
PCA on high-dimensional feature vectors and normalizing the 3 main components as RGB.

Fig. 3: Generalizable NeRFs acquire geometric and semantic
priors: RGB images are input views from ScanNet [8], color
images are PCA visualizations of feature volume projected to the
input camera view encoded by an RGB-D Gen-NeRF [10] encoder.
Note how semantically similar structures acquire similar features.

SE(3). Our goal is to create a unified scene representation
that captures geometric and semantic properties for robot
loco-manipulation tasks. Specifically, we aim to design an
encoding function fenc(·) : (Ω × SE(3))N → RN×C

that compresses D to a latent representation, and decoding
functions ggeo(·, ·) : R3 × RN×C → Rm and gsem(·, ·) :
R3 × RN×C → Rn that decode the latents into different
geometric and semantic features at different positions in 3D
space. The geometric and semantic features can then serve
as input to a downstream planner. We aim to design these
functions to meet the following criteria:

• Unified. The encoded scene representation fenc(D) is
sufficient for both geometric and semantic query (i.e.,
ggeo and gsem are conditioned on D only via fenc(D)).

• Incremental. The scene representation supports effi-
cient incremental addition of new observations, (i.e.,
fenc(D1 ∪ D2) = fenc(D1)⊕ fenc(D2))

• Implicit. The encoded latents fenc(D) are organized in
a sparse implicit representation to enable more efficient
scaling to large scenes compared to storing D.

• Open-world. The semantic knowledge from gsem is
open-set and aligned with language, so the robot can
perform open-world perception.

We build GeFF upon generalizable NeRFs to satisfy these
requirements. An overview of our method is shown in Fig. 2.

B. Learning Scene Priors via Neural Synthesis

Generalizable NeRFs (Gen-NeRFs) offer an effective pre-
training objective for rich geometric and semantic priors [10,
16, 57]. Fig. 3 shows an illustration, rendering the latent
feature volume from an RGB-D Gen-NeRF encoder [10]
trained to synthesize novel views on the ScanNet [8] dataset.
The colors correspond to the principal components of the
latent features. We observe separations between objects and
the background, despite that explicit semantic supervision
was not provided during training.

GeFF uses two types of supervision to enhance these priors
— semantics using 2D features and geometry using SDF.

Supervision (i): Language-Alignment via Feature Dis-
tillation. Although we have shown that Gen-NeRF encoders
implicitly capture geometric and semantic cues, the repre-
sentation is less useful if it is not aligned to other feature
modalities, such as language. To enhance the representation
capability, in GeFF we use knowledge distillation to trans-
fer learned priors from 2D vision foundation models and
align the 3D representations with them. To the best of our
knowledge, GeFF is the first approach that combines scene-
level generalizable NeRF with feature distillation. In contrast
to previous works [20, 22, 57], which either require costly
per-scene optimization [20, 22] or is limited to object-centric
representation [57], GeFF both works in relatively large-scale
environments and runs in real-time, making it a powerful
perception method for mobile manipulation.

Specifically, we build a feature decoder gsem(x, fenc(D))
on top of the latent representation, which maps a 3D co-
ordinate to a feature vector. The output of gsem is trained
to be aligned with the embedding space of a teacher 2D
vision foundation model, termed fteacher. Note that gsem
is isotropic, as the semantics of an object should be view-
independent regardless of the viewing directions. We can



(a) (b) (c)

Fig. 4: GeFF compresses and refines multi-view observations:
(a) single RGB view; (b) coarse 2D CLIP heatmap with query
‘toy duck’; (c) 3D heatmap from GeFF with clean boundary
reconstructed from compressed latent representation.

render 2D features for pre-training via

F̂(r) =

∫ tf

tn

T (t)α(r(t))gsem(r(t), fenc(D))dt , (2)

which is modified from Eq. 1. To further enhance the fidelity
of the 3D scene representation, we use the 2D features of the
input views computed by the teacher model as an auxiliary
input to fenc, which is

fenc(D) = CONCAT
(
f̂enc(D), fteacher(D)

)
, (3)

where f̂enc is a trainable encoder and fteacher is a pre-trained
vision model with frozen weights. The final feature rendering
loss is then given by standard L2 loss between F̂ and F,
which is the reference feature obtained by running fteacher
on ground-truth novel views. Note that the input views and
the rendered novel views are different adjacent views. The
reference feature, F, is obtained by running fteacher on
ground-truth novel views.

Model for Distillation. Our proposed feature distilla-
tion method for scene-level generalizable NeRFs is model-
agnostic. In this work, since we are interested in open-
vocabulary tasks, we choose MaskCLIP [64] as fteacher.
MaskCLIP offers coarse (see Fig. 4) features but runs in
real-time on mobile robots.

Supervision (ii): Depth Supervision via Neural SDF.
We use a signed distance network s(x) = ggeo(x, fenc(D))
to encode depth information, which is based on existing
work [10, 31, 52]. Doing so has two advantages over
previous work [61]: 1) it leverages depth information to
efficiently resolve scale ambiguity for building scene-level
representation, rather than restricted to object-level represen-
tation, and 2) it creates a continuous implicit SDF surface
representation, which is a widely used representation for
robotics applications such as computing collision cost in
motion planning [31].

To provide supervision for ggeo during pre-training, we
follow iSDF [31] and introduce an SDF loss Lsdf and
an Eikonal regularization loss [11] Leik to ensure smooth
SDF values. The main difference with iSDF [31] is that
we condition ggeo with fenc(D), which does not require
optimization for novel scenes. We represent the opacity
function α in Eq. 2 using s(x)

α(r(t)) = MAX

(
σs(s(x))− σs(s(x+∆))

σs(s(x))
, 0

)
, (4)

where σs is a sigmoid with a learnable parameter s. The
depth along a ray r is then rendered by

D̂(r) =

∫ tf

tn

T (t)α(r(t))didt , (5)

where di is the distance from the current ray marching
position to the camera origin. Similar to Eq. 2, the rendered
depth can be supervised via standard L2 loss.

Final Training Objective. Combining all the above equa-
tions, the total loss we used to train fenc for a unified latent
scene representation is given by

L = λ1Lcol + λ2Ldepth + λ3Lsdf + λ4Leik + λ5Lfeat (6)

where λis are hyperparameters used to balance loss scales.
Empirically, we found that the feature quality is not sensitive
to the choice of λ.

C. Implementing Open-Vocabulary Mobile Manipulation

Scene Mapping with GeFF. GeFF encodes posed RGB-
D frames to a latent 3D volume represented as a sparse latent
point cloud, which can be built by concatenating per-frame
observations. The camera poses are provided by an off-the-
shelf VIO method [39].

Decoded Representations. Though GeFF supports con-
tinuous decoding, it is inefficient to generate all possible
representations densely on-the-fly. For this work, we decode
the latent representation into discretized point clouds as
geometric representations for navigation and manipulation.
We then compute 2D grid by projecting the decoded 3D
points and compute features for each grid cell by averaging
the features of related points. This enhances basic units (i.e.,
points and grid cells) with features from gsem.

Handling Language Query. Following standard proto-
cols [35], GeFF takes in positive text queries and negative
text queries (e.g., ceiling). To rate the language similarity,
we compared decoded point features with text features using
cosine similarity with a temperatured softmax. We sum up
the probabilities of positive queries as the similarity score.
For part-level language query, we use the conditional CLIP
query technique proposed by Rashid et al. [36]. After the
initial object is segmented, conditional CLIP query performs
another pass of language query conditioned on the segmented
object with part-level prompt for part segmentation.

GeFF for Navigation. We consider the navigation of
the quadruped robot as a 2D navigation problem following
existing work [6, 58, 60]. Given text queries, we compare
text embedding to grid embeddings. We use DBSCAN [9]
to cluster high-response points for goal location and assign
semantic affordances to grid cells. With an affordance-aware
A∗ planner, this achieves semantic-aware navigation. Note
that the 2D occupancy map is updated in real-time.

GeFF for Object-level Manipulation. After the robot
arrives at the goal receptacle, it searches for the target object
by comparing semantics in points with given text, and uses
DBSCAN to represent the target object as a centroid. In
practice, we found that the parallel gripper has a high success
rate in object-level grasping via an intuitive open-push-close



TABLE I: Open-vocabulary mobile manipulation success rate. Navigation success (Nav. Succ.) and composite mobile
manipulation success (Mobile. Mani. Succ.) are reported for object-level tasks. For part-level tasks, we report manipulation
success rates with different object-part queries (e.g., mug-handle: grasping various mugs by handles). Latency represents the
delay from the reception of the frame to the response of a text query on the onboard AGX Orin. The overall success is the
average of overall success rates of object-level and part-level manipulation. ⋆ methods require offline optimization with all
observations batched together.

Object-level Mobile Manipulation Part-level Manipulation

Method Latency Nav. Succ. Mobile Mani. Succ. Mug-Handle Tool-grip Cart-bar Avg. Succ. Overall Succ.

GeFF (Ours) 0.39s 94.4% 61.1% 44.4% 66.7% 80.0% 63.7% 62.4%
LERF⋆ [20] ∼2 hrs⋆ 72.2% 44.4% 36.1% 20.0% 70.0% 42.0% 43.2%
ConceptGraph⋆ [13] ∼200s⋆ 94.4% 72.2% 0% 20% 15% 11.6% 41.9%
ConceptGraph-Online 4.63s 5.56% 5.56% 0% 0% 15% 5% 5.3%

TABLE II: Ablation of auxiliary CLIP input (Eq. 3) on
object-level mobile manipulation in diverse scenes. Naviga-
tion success rates (Navi.) and composite mobile manipulation
success rates (Mani.) are reported.

Meeting Room Kitchen

Methods Navi. Mani. Navi. Mani. Overall

GeFF (Ours) 13/15 8/15 12/18 8/18 41/66
GeFF (no aux) 9/15 5/15 7/18 4/18 25/66

LERF [20] 6/15 3/15 8/18 5/18 22/66

gripper action sequence with trajectories computed by a
sample-based planner (OMPL planner [44]).

GeFF for Part-level Manipulation. For objects that
involve intricate geometry (e.g., mug/tool with handles), it
is counter-intuitive to solve the grasping problem with a
centroid. In such cases, the user can provide specific parts
to grasp via language. In GeFF, after the object centroid is
localized, the robot can optionally use its in-wrist camera to
gather multiple views, which adds millimeter-scale details to
the representation. We then perform conditional CLIP queries
and DBSCAN using significantly smaller EPS (e.g., 1cm) to
determine grasping location.

IV. EXPERIMENTS

A. Experimental Setup

Training Details. GeFF is pre-trained on the ScanNet
dataset [8]. for 50 epochs on a server with 8 RTX3090 GPUs
in 6 days. We use the ViT-L CLIP model as fteacher.

Robot Platforms. We use the Unitree B1 as the base robot
with a Unitree Z1 arm mounted on top of it. Besides a stereo
camera and a structured light camera mounted at the robot
head, the part-level experiments also uses an in-wrist camera
to gather multi-view observations. The hardware setup can
be seen in the supplementary video.

Real-world Evaluation. For quantitative experiments, we
use 4 environments: a 25m2 lab , a 30m2 meeting room,
a 60m2 community kitchen, and a 15m2 office. For object-
level experiments, unless otherwise noted, we use a total
of 17 objects (6 misc., 5 office items, and 6 culinary
items) including 8 novel categories that GeFF had not seen
during pre-training. For part-level manipulation, we use three
different object categories with 4 instances each.

TABLE III: Mobile manipulation under scene change, where
objects are added after the initial scan. Note that meth-
ods [13, 20] with expensive training requirement do not
handle scene change.

Method Change Lab Meet. Rm. Kitchen

GeFF ✗ 7/9 7/9 8/9
✓ 4/9 6/9 8/9

LERF [20] ✗ 6/9 7/9 4/9
✓ NA∗ NA∗ NA∗

Experiment Protocol. For all settings, we first manu-
ally drive the robot to build an initial representation of
the scene to perceive receptacles (replaceable by standard
robotic exploration algorithms). Then we provide task-related
receptacle and object names to the robot.

Baseline Implementation. We choose two recent open-
vocabulary scene representations as baselines. Concept-
Graphs [13] is a state-of-the-art open-vocabulary scene-level
representation. Similar to OK-Robot [24], it uses pre-trained
vision models [21, 25] for perception. Since both Con-
ceptGraph⋆ and LERF⋆ require offline batch processing
of all images, we process observed frames on a desktop
computer. After which we manually provide object goals.
ConceptGraph-Online is an online variant of CG, where it
drops incoming frames if the previous frame is not finished
processing. Since CG does not run on the AGX Orin, we re-
use the same pipeline of ConceptGraph⋆ but downsample
the frames to match the latency. All representations are
constructed by poses estimated by onboard VIO.

B. Evaluation

We answer important Research Questions: How is GeFF
compared to other open-vocabulary scene representation
methods (A1, A2, A3, A4)? How is GeFF compared to
simple projection baseline (A6)? What were the design
choices (A5)? Can GeFF be used for diverse tasks (A7)?
A1. ConceptGraph requires offline optimization and
breaks when real-time requirement is enforced. From
Tab. I, we can see that ConceptGraph works at the cost
of expensive offline processing, which is not suitable for
mobile robots. When ConceptGraph is granted offline pro-
cessing using desktop-level compute, it achieves slightly
better results than GeFF on object-level grasping. However,



(a) Avoiding Dynamic Obstacle (b) Part-Level Representation (c) Entering Doorway (d) Semantic-aware Planning

Fig. 5: Qualitative results of GeFF for diverse tasks: (a) real-time update for dynamic person detection; (b) GeFF enables
manipulation by parts; (c) entering a narrow doorway; (d) semantics-aware planning with affordance of ‘lawns’. The results
are animated in the supplementary video. Images in the second row are PCA visualization of first-person GeFF features.

TABLE IV: GeFF learns geometric priors to reconstruct
geometry from compressed latent representation. Both
GeFF and projection baselines downsample the depth and
MaskCLIP features to at most 512 points. Depths are recon-
strcuted/upsampled and compared to reference depth.

Method Depth L2 Error↓
GeFF 0.012
Projection (Nearest interpolation) 0.061
Projection (Bilinear interpolation) 0.040

when it is forced to perform online inference, we empirically
observe its internal point cloud merging design breaks due
to its assumption of adjacent frame proximity, which leads
to degenerate representations and bad success rate.
A2. ConceptGraph fails to respond to part-level queries.
Specifically designed for object-level representations, Con-
ceptGraph can not support part-level grasping (e.g., grasping
a screwdriver by handle instead of shank), which is evident
from Tab. I. Specifically, it generates no or bad responses to
part-level queries such as handles or grips, which is due
to lack of part-level training data in the open-vocabulary
detector [25] that ConceptGraph relies on.
A3. Unlike GeFF, LERF requires offline processing and
does not provide clear boundary. LERF [20], another
feature field method, is an RGB-only method with view-
dependent features. Thus we select the point with maximum
responses in features rendered from training views as the goal
location. Due to lack of geometric supervision, LERF often
fails due to (1) noisy responses from under-observed areas
and (2) unclear object boundaries. However, as a continuous
implicit method, LERF show significantly better perfor-
mance on part-level manipulation than ConceptGraph,
which is consistent with our finding that continuous repre-
sentation is better suited for part-level representation.
A4. GeFF works when scene changes with slightly worse
performance. For manipulation under scene change, we
place a subset of objects (hand lotion, bottle, dog toy) on the
table after the initial scan with 3 trials each. Tab. III shows
the results. Both LERF [20] and CG [13] are not applicable
for scene changes as they require costly re-training. One

potential cause for the decrease is the lack of multi-view
observations as the robot only gets a front view when it
approaches the receptacle.
A5. Auxiliary 2D input helps with generalization. We
ablate GeFF the effectiveness of Eq. 3 in more diverse
environments in Tab. II. Specifically, we found that, if
auxiliary input is not used, GeFF shows decreased perfor-
mance especially on objects absent from pre-training on
ScanNet [8]. We believe that auxiliary input provides a
‘shortcut’ generalization beyond training data, which may
replaced by a significantly larger training scale.
A6. The learned geometric priors are effective at com-
pression. To evaluate the learned geometric priors, we re-
construct depth from the latent representation to compare
it with reference depth. For a given RGBD frame, GeFF
encodes it to 512 latent points and reconstructs the depth. The
simple projection baseline downsamples the given RGBD
frame to 512 pixels, and interpolates back to the original
resolution. The resulting L2 errors between reconstructed
depths and reference depths are given in Tab. IV using 10
validation scenes of the ScanNet dataset, where GeFF shows
significantly better geometric error.
A7. GeFF can serve as the 3D perception backbone
for diverse tasks. We show qualitatively in both Fig. 5
and the supplementary material that GeFF features are
fine-grained and real-time enough to perform diverse tasks
beyond grasping, such as dynamic obstacle avoidance,
semantic-aware navigation, and articulated manipulation
for door opening, which highlights its potential to provide
3D representation for robotics tasks.

V. CONCLUSION

In this paper, we present GeFF, a scene-level generalizable
neural feature field with feature distillation from VLM that
provides a unified representation for robot navigation and
manipulation. Deployed on a quadruped robot with a manip-
ulator, GeFF demonstrates zero-shot object retrieval ability
in real-time in real-world environments. Using common
motion planners and controllers powered by GeFF, we show
competitive results in open-set mobile manipulation tasks.
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